三级aa视频在线观看-三级国产-三级国产精品一区二区-三级国产三级在线-三级国产在线

Global EditionASIA 中文雙語Fran?ais
Opinion
Home / Opinion / Global Lens

Rehabilitation robots awaiting large-scale use

By Giuseppe Carbone | CHINA DAILY | Updated: 2024-11-19 07:30
Share
Share - WeChat

SONG CHEN/CHINA DAILY

Thanks to the rapid development of technology, robotic devices are transforming healthcare, showing promise especially in rehabilitation. Robotic rehabilitation devices offer targeted, repetitive movement therapy, helping patients to recover from stroke, injuries or surgery. However, despite remarkable innovations, widespread adoption of robotics in healthcare remains elusive. To bring these tools from laboratories to mainstream healthcare, increased research funding and strategic policy shifts are essential.

Robotic rehabilitation devices vary in design and function, from exoskeletons for limb support to smaller end-effectors aiding wrist and finger movements. These devices offer personalized, high-precision exercises, allowing patients to perform repetitive, controlled motions crucial for recovery. They also give real-time feedback, track progress and, unlike human therapists, never tire. For patients recovering from conditions such as a stroke or spinal cord injuries, robotic devices have the potential to accelerate their rehabilitation process and reduce dependency on healthcare workers.

In China and other parts of Asia, universities such as Tsinghua University and Beijing Institute of Technology are exploring advanced robotic systems to serve specific rehabilitation needs. Yet these promising technologies are largely confined to research centers, with access limited to elite healthcare facilities.

The question is: What will it take to see robotic rehabilitation on a larger scale, making it accessible for ordinary patients? And what is holding back large-scale adoption?

Despite their potential, robotic rehabilitation devices face significant barriers. The key challenges include high costs, technological limitations, lack of regulatory frameworks, and limited evidence of long-term benefits.

Robotic devices are often prohibitively expensive, with costs driven by complex components, materials and sensors. Hospitals and clinics may hesitate to invest in such devices, especially because traditional physiotherapy, while less efficient, is effective and affordable. For instance, a basic exoskeleton can cost upwards of tens of thousands of dollars, making it financially unfeasible for most facilities and out-of-reach of patients. Without funding support or financial incentives, the market is unlikely to grow at a pace that would allow cost reductions through economies of scale.

Rehabilitation needs vary widely from patient to patient, complicating device design. For example, robots must accommodate different body sizes and movement ranges, requiring frequent and precise adjustments. Control systems struggle to account for human biomechanics, limiting the robot's ability to adjust movements dynamically. Innovations like shape memory alloy actuators, which allow variable stiffness for customized support, are promising but still in the early stage of development. Technical challenges related to durability and usability further hinder the chances of their adoption.

Although initial studies indicate that robotic rehabilitation can improve motor skills, the data often come from small trials. For large-scale adoption, healthcare providers and insurance companies require strong, large-scale evidence to prove it yields long-term benefits. Robust data are also needed to establish standard treatment protocols, which are currently lacking, making it difficult for hospitals to justify investment in these devices.

Besides, robotic rehabilitation devices require specialized training, but healthcare curriculums rarely include robotics in therapy training. Therapists not familiar with these tools may mistrust their efficacy or feel uncomfortable operating them, hindering patient acceptance. This gap between innovation and application hinders mainstream adoption, particularly when caregivers and patients question the technology's value.

One way to accelerate the adoption process of robotic rehabilitation is to allocate more funds to dedicated research. Europe is leading the charge, recognizing that without sustained financial support, even promising technologies risk hitting the wall at the prototype stage. European initiatives such as the "Agewell" project, coordinated by this author at the Technical University of Cluj-Napoca's CESTER Laboratory in Romania, are pushing the boundaries of what robotic rehabilitation can achieve. Agewell is focused on creating adaptive robotic solutions to aid stroke patients to regain daily life skills, directly tackling the challenges associated with aging populations.

To move robotic rehabilitation from labs to everyday use, we must address both technological and economic barriers.

To begin with, cost reduction is essential. Mass production of standardized components and shifts toward cost-effective materials, like flexible robotics, could make devices more affordable. Also necessary is exploring bio-inspired designs to increase functionality without driving up costs.

Artificial intelligence (AI) can play a significant role in making rehabilitation robots smarter and more adaptive. AI allows devices to analyze real-time patient data and adjust exercise intensity, frequency, and support levels. By customizing therapy, AI minimizes the need for manual adjustments, easing the burden on therapists. A robotic device that continuously learns and tailors itself to each patient's progress could maximize rehabilitation outcomes, even in high-demand settings.

To bridge the knowledge gap, robotic rehabilitation should become an integral part of medical and physiotherapy training. Certification programs and continuing education courses can equip healthcare workers with the skills to operate and maintain these devices, giving therapists confidence in their use and patients confidence in their effectiveness.

Tele-rehabilitation offers new possibilities for remote care, especially in regions with limited access to physical therapy services. Robotic devices that patients can use at home, under the remote guidance of a therapist, could bring professional rehabilitation to rural and underserved areas. Tele-rehabilitation also supports continuity of care, as patients can continue therapy from home, enhancing outcomes and reducing hospital readmissions.

Government-backed initiatives can dramatically increase the availability of robotic devices. Subsidies, tax incentives, and regulatory support could make it financially feasible for healthcare centers to adopt robotic rehabilitation. Policies that promote the use of medical robotics in public healthcare settings would improve accessibility, especially in countries with large populations and varying levels of healthcare access, like China.

The author is chair of the Technical Committee on Robotics and Mechatronics of the International Federation for the Promotion of Mechanism and Machine Science, member of the board of directors of the International Society of Bionic Engineering, a professor at University of Calabria, a visiting distinguished professor at East China Jiaotong University, and editor-in-chief of Robotica.

The views don't necessarily represent those of China Daily.

If you have a specific expertise, or would like to share your thought about our stories, then send us your writings at [email protected], and [email protected].

Most Viewed in 24 Hours
Top
BACK TO THE TOP
English
Copyright 1995 - . All rights reserved. The content (including but not limited to text, photo, multimedia information, etc) published in this site belongs to China Daily Information Co (CDIC). Without written authorization from CDIC, such content shall not be republished or used in any form. Note: Browsers with 1024*768 or higher resolution are suggested for this site.
License for publishing multimedia online 0108263

Registration Number: 130349
FOLLOW US
主站蜘蛛池模板: 欧美精品亚洲精品日韩经典 | 久久香蕉国产线看观看乱码 | 亚洲国产综合人成综合网站00 | 国产美女精品久久久久中文 | 欧美国产日韩在线播放 | 中文字幕色在线 | 伊人色综合久久天天伊 | 国产成人涩涩涩视频在线观看免费 | 一级黄色国产片 | 麻豆传媒网站入口 | 国产一区二区三区国产精品 | 欧美一级毛片欧美一级成人毛片 | 污污网| 露脸一二三区国语对白 | 婷婷草 | 欧美中文综合在线视频 | 亚洲视频欧洲视频 | 亚洲an日韩专区在线 | 久草在线这里只有精品 | 国产网站在线免费观看 | 中文偷拍视频在线观看 | 97精品视频在线观看 | 国产对白91色拍高清精品 | 美女三级黄 | 国产精品视频一区麻豆 | 亚洲国产精品热久久2022 | 午夜拍拍福利视频蜜桃视频 | 国产精品欧美韩国日本久久 | 亚洲天堂色视频 | 美女黄污网站 | 国产成人综合手机在线播放 | 国产成人无精品久久久 | www.一区二区三区 | 中文字幕黄色 | a黄色| 免费一级特黄欧美大片久久网 | 真人毛片免费拍拍拍aa视频 | 草逼网址 | 精品久久洲久久久久护士 | 国产精品99久久久久久www | 国产精品视频永久免费播放 |